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Abstract. The absorption of eledromagneticvaver andRamanscattering in glasses 
M calculated. The prindpal scattering mechanism considered is the interdon 
of the electromagnetic waves with atoms tunnelling in strongly fluctuating double- 
well potentids which are characteristic of glasses. The temperature and frequency 
dependences 4 the absorption coefficient and the cmw section of the small frequency 
shifc Raman scattering are obtained. The results M fitted to the experimental data 

1. Introduction 

Absorption of electromagnetic waves in glasses in the temperature range from liquid 
helium to room temperature is usually interpreted in terms of the relaxation inter- 
action of the wave with some localized objects within the glassy samples (see, e.g., 
reviews in Phillips (1981)). On the other hand an important role can be played by the 
interaction of the electromagnetic wave with the rigid doublewell potentials (DWP) 
in glasses due to multiphonon processes (Fleurov and Trakhtenberg (1986), see also 
Goldanskii e l  al (1989)). According to this mechanism tunnelling by the particle 
in such a DWP is essentially renormalized due to the strong fluctuations of the po- 
tential barrier. As a result a multiphonon packet is involved in the interaction of 
the absorbed particle with the DWP (for the phonon see Fleurov and Trakhtenberg 
(1986); for the neutron, Fleurov and Levanda (1992); the photon is to be considered 
in this paper). The multiphonon absorption of the electromagnetic wave is similar in 
many respects to the multiphonon ultrasonic attenuation considered in Fleurov and 
Trakhtenberg (1986). There is always a competing relaxation mechanism (Jackle e t  
al 1976) which usually appears to be stronger. However the higher temperatures and 
higher phonon (or photon in this paper) frequencies favour the multiphonon mech- 
anism. There are two reasons for this: first, the fluctuations of the barrier become 
stronger with a temperature rise causing a rapid increase in the intensity of the mul- 
tiphonon transitions; second the relaxation interaction is always proportional to the 
factor [1+ (TW)'~-' where r is the relaxation time and w is the frequency. Therefore 
the relaxation interaction becomes weak in the limit rw > 1 which is easily achiev- 
able in the THz region. Then the multiphon interaction would become the leading 
mechanism determining both the temperature and frequency dependence of the ab- 
sorption. A similar situation takes place for the attenuation of the electromagnetic 
waves where the two mechanisms-relaxation and multiphonon-compete, the latter 
being stronger at higher temperatures and frequencies. 
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The multiphonon interaction can also be important for the Raman scattering of 
light. This is an inelastic scattering process when the incident photon is absorbed 
and then re-emitted with another frequency. The small frequency shift (< 20 cm-') 
scattering is usually attributed to two different processes, i.e. the single-phonon and 
Brillouin scattering processes (Hayes and Loudon 1978). However, they are not ahle 
to account for the whole scattering intensity (Winterling 1975, Theodorakopoulos 
and Jackle 1976, Fontana et a1 1989). We believe that both the relaxation mechanism 
(Jiickle 1981, and references therein) and the multiphonon mechanism (to be discussed 
in this paper) contribute to this excess scattering. The two mechanisms differ in their 
temperature and frequency shift dependences. As we shall see later the multiphonon 
mechanism, in contrast to the relaxation mechanism, does not predict a maximum in 
the temperature in the Raman scattering cross section. The presence or absence of 
such a maximum can be a good indication in favour of one of these mechanism under 
certain experimental conditions. 

In this paper we will study the interaction of the electromagnetic waves with 
rigid DWPs in glasses. Some general relationships describing the interaction of the 
electromagnetic waves with the DWPs are considered in section 2. The cross section 
of the Raman scattering due to the multipbonon interaction of the light with the 
rigid DWPS is discussed in section 3 and the absorption of the electromagnetic wave is 
calculated in section 4. 

2. Interaction of the electromagnetic waves with rigid DWPs 

A glass sample interacting with the electromagnetic field is described by the Hamil- 
tonian 

& = E- 1 (-ihVvJ - -A(r , , t ) )  e 2 +E& (-ihV,, + -%4(Ri,t) Z.e 2m C C 
7,  R. ' 

+ v({r>L{RJ). (2.1) 

Here the first two terms stand for the kinetic energy of the electrons and ions inter- 
acting with the electromagnetic field A. Mi and m are the masses of the itb ion and 
electrons, respectively, e is the electron charge, c is the light velocity, 2, is the ion 
valency. V ( { r j } ,  {Iti}) includes all sorts of interactions in the electron-ion system 
of the sample. The following notation will be used for the parts of the Hamiltonian 
describing the interaction between the electromagnetic field and the glass: 

(2.2) fi = f i A A  + I;rAP, + ~ A P N  

where 

Z? HiAA = - -E A(rj)' + 'A(Ri)'  
; Mi 2c2 m , 

J 
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Considering long wave electromagnetic waves (i.e. the wavelength is larger than 
the characteristic dimension of the DWPs) we can neglect the space coordinate depen- 
dence of the vector potential and use the following expression for the quantized vector 
potential 

where wk is the frequency of the kth mode; c is the dielectric constant of the glass; ek is 
the vector of the polarization of the light; ik and i*+ are the creation and annihilation 
operators of the photons, V is the sample volume. The orthogonality of the different 
states of the DWP will also allow us in what follows to disregard the contribution of 
the f iAA part of the Hamiltonian (2.2). 

Now we need the wavefunctions of the unperturbed states of the glass without 
interaction with the electromagnetic field (2.2). Using the double adiabatic approxi- 
mation they can be written in the form: 

@ m , u , n ( b k ) ?  {zII, {P, 1) = pm(Irk} ;  { Z I ) ,  IPj I ) + o ; m ( { ~ ~ l ;  {~jl)qn;u,m({~j  1). (2.4) 

Here { r k }  and m stand for the electron coordinates and the electronic quantumstates. 
The coordinates { z l }  and { p j }  and the quantum numbers 01 and n correspond to the 
local anharmonic modes and harmonic phonons, respectively. They are obtained from 
the atomic coordinates {Ri} by a transformation (Karpov et  al 1982, Fleurov 1989, 
see also the review of Galperin el al (1989)) 

{Rio) - { Z J > { P j } .  (2 .5 )  

The double adiabatic approximation only works well (Fleurov and Trakhtenberg 1986, 
Goldanskii e l  a /  1989) for rigid DWPs which will be considered later. The standard 
procedure results in the following equation for the operator of the non-adiabatic in- 
teraction between the states 

(2 .6)  
N 

Lmomfol = 'Komeoi + &"lo1 

where 

Agom, 0 1  = - J Gmo Gmto, p m  [G ({Pj 11 + 2'1 1) > pm11 tdz,} {drj 1. 

PN({p,}) and p({z ,})  are the kinetic energy operators of the harmonic degrees of 
freedom and those of the DWPS, respectively. 

In the calculations that follow we shall need the matrix elements 

of the electron momentum. The subscript {r,} indicates the integration over the 
electronic coordinates. It is calculated independently for each DWP, I ,  and describes 
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a transition between the electronic states m and m'. It can be done assuming that 
different DWPs are local entities, do not interact strongly with each other and are 
treated independently. We shall be interested later only in the transitions between 
the ground and lowest excited electronic states and we will omit the electronic indices 
in order to simplify the notation. 

The transitions between two states of the Ith DWP are determined by the matrix 

V N Fleurov and M Levanda 

n,s(kJjI) = ( ~ a ( ~ l ; { ~ ~ ) ) l p ~ s ( ~ ~ , { ~ j ) ) l ~ s ( ~ ~ ;  {PjHL,  = P k s  + P b &  + P k p  

(2.8) 

depending on the phonon configuration {p, ) .  The subscript z1 denotes integration 
over this variable and U= and # are the Pauli matrices. 

As usual we start here with the non-diagonal localized representation (see, e.g., 
Phillips (1987); this choice is discussed in Fleurov and Levanda (1992)) in which each 
function lo,(+; { p j ) )  describes the tunnelling 'particle' localized in one of the two wells 
of the DWP. Then the coefficients in the transition amplitude (2.8) can be represented 
in the form 

where 

lPol= fiIaDwP. 

aDWP is the characteristicscale of the DWP and J ( { p j } )  is the transparency parameter 
of the DWP barrier for the tunnelling particle. 

A relatively weak dependence of the coefficient Po on the phonon coordinates { p j }  
is neglected compared with the strong dependence of the exponential function. The 
latter appears to be due to the small overlap of the wavefunctions $,(z; { p j ) )  of the 
different wells of the DWP and has the same form as the amplitude 

A(IPj1) = hvexP[-+J({PjHI (2.10) 

of the tunnelling transitions between these two wells. 

ical transformation (Fleurov and Trakhtenberg 1986, Fleurov and Levanda 1991) 
Now the transition to the diagonal representation is made by means of the canon- 

where 

(2.11) 

eph({qj}) is the density matrix of the phonon subsystem which depends on the 
deviations qj  = pj - p(l"' of the phonon variables from their equilibrium values p(l"' . 
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The asymmetry parameter ca is the difference between the energies of the particle in 
each well obtained in the localized representation. 

We are interested here in the study of the multiphonon interaction which is due 
only to the third term in equation (2.8) and is strongly dependent exponentially on 
the phonon coordinates. The other addends in equation (2.8) do not contain this 
strong dependence; however, we shall keep them here since they will he used in the 
calculation of both the Raman scattering and the absorption of the eIectromagnetic 
waves. After the transformation (2.11) the transition amplitude (2.9) takes the form 

(2.12) 

that will be used later on. The term proportional to bUa has been omitted in a similar 
expression in our previous paper (Fleurov and Levanda 1992) where the multiphonon 
neutron scattering is discussed. It is unimportant there since it does not contribute 
to the multiphonon interaction with rigid D w P s  in the first order of the perturbation 
theory. Here, however, we shall deal with second-order processes where the interference 
of this term with the term proportional to the exponential function A({pj)) makes 
the principal contribution. As for the second term, proportional to pd, it contributes 
to the relaxation mechanism. 

3. Raman scattering of the electromagnetic wave in the glass 

In this section the doubledifferential cross section for the Raman scattering in the glass 
due to the interaction of the electromagnetic field (2.3) with the D W P s  is calculated. 
It describes the interaction of the electromagnetic wave with the DWPs  which causes a 
scattering of a wave with frequency w1 into a solid angle dR with a new frequency w2. 
In this case the direct interaction of the electromagnetic wave with the ions can be 
neglected due to their large masses and the interaction with the electrons described 
by the operator kAP- plays the dominant role. 

The average cross section per DWP is 

v 2  2 3 
w2 ''urn (w1,wZ) - - 2 

dR dw2 c4w1N1NDWP 

/1 ,I #I ~ , I A A ~ ~ I @ m l a i " l ) ( @ m l a l " l I A A P ~ l ~ m u " )  
X A W j  1 (% " 

/,DWP m'u'n' E m ~ u ~ n ~  - Eman - LI 

x 6 ( L ,  - tw, - 6E) (3.1) 

where Nl is the number of the incident photons in the scattering volume, V; and 
NDwp is the number of rigid DWPs  in the scattering volume; to make the notation 
shorter the changes in the photon numbers are not denoted explicitly in equation (3.1). 
Here the averaging over the initial Q,,,, (i), and summation over the final @m,,a,,n,,r 
(f), states are implied. Summation over all D W P s  participating in the process should 
also be carried out in (3.1). Raman scattering is the process which first appears to 
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second order in the electric field since a photon with the frequency, w l r  is absorbed 
and then a photon with another frequency, w 2 ,  is emitted. This process is accompa- 
nied by a corresponding change in the energy 6E of the glass. It may be due to a 
change in the electronic, phonon or DWP quantum numbers. However, here we are 
interested in a frequency range corresponding to energies which are much smaller than 
the characteristic electronic energies. Therefore, we may assume that the initial and 
final electronic states coincide, m = m” = 0. 

The operators -iAV,, in PAP- necessarily change the electronic quantum numbers 
m and the intermediate electronic state differs from the ground state m‘ # 0. The 
leading contribution of the first excited electronic state in the cross section (3.1) will 
be considered later. Substituting equation (2.12) into (3.1) one obtains three terms 
which are proportional to  the zeroth, first and second order of the exponential function 
exp[-J({pj})]. The zeroth-order term is responsible here for the relaxation processes 
and does not contribute to the multiphonon processes at all while the second-order 
term is small compared with the first-order term. Therefore only the first-order term 
will be taken into account. 

The value of the energy denominator in the equation is determined mainly by 
the electronic energy, Ee, the changes in the phonon and DWP energies giving only 
relatively small corrections. Therefore, we may substitute it by a constant, 

V N Fleurov and M Levanda 

E,,,,,,,, - E,,, - twl E. - twl ( 3 4  

and remove i t  from the sums. 

elements of the operator of the electron momenta. The result is 
Now we use equation (2.2) for the interaction and equation (2.12) for the matrix 

(3.3) 

where 

and 

C(AE) = e(AE)e-pAEI2 + 5(-AE)gAE/’. 

Equation (3.4) for the quantity 5(AE) coincides to within the prefactor with the 
equation for the rate constant for the tunnelling transitions through the fluctuating 
barrier as calculated in Fleurov and Trakhtenberg (1986) (see also Goldanskii et d 
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1989). The principal details of these calculations are given in Fleurov and Levanda 
(1992). Using these results the Raman cross section can be represented as 

Here 

The quantity r(T) in equation (3.5) is the multiphonon relaxation time in arigid DWP. 
The calculation carried out in our previous papers (Fleurov and 'Itakhtenberg (1986), 
see also Fleurov and Levanda (1992)) assumes that the fluctuations in the DWP barrier 
are mainly caused by its interaction with only one phonon mode characterized by the 
frequency Cl and reduced mass M .  The equation obtained there reads 

where 

sinh(phCl/4)/ cosh3(phCl/4) 
v2(T) = 2[tanh(PK2/4) + R,/2] 

vp,(T) = [ 1 + 2 coth (-)I PhQ [ 1 + -i- RI tmh  . ( y)] 
4 

The two dimensionless parameters in equation (3.6) are 

Equation (3.5) enables an analysis of the temperature and frequency dependence 
of the cross section of the Raman scattering due to the multiphonon interaction of the 
light with the rigid DWPs. If we average over the DWPs in the manner described in 
Fleurov and Levanda (1992) assuming a broad distribution of the asymmetry param- 
eter , tat and a narrow distribution of the tunnelling parameter, J o ,  then the principal 
factors determining the behaviour of the cross section are the relaxation time T(T) and 
exponential function. The latter also determines the dependence of the cross section 
(3.1) on the frequency shift w2 - w1 in the scattering process. 

For a frequency shift which is not too large, when this formula holds hest of all, the 
temperature dependence of the double-differential cross section is determined mainly 
by the relaxation time r(T) for which we have equation (3.6). Using this expression 



994 V N Fleuron and M Leuanda 

Figure 1. Thetemperat~depcndenrroliheRamanecattering in vitreom silicafor 
ihe frequency shift of 150 GHz. The circles show the experimental data of Buchenau 
e1 a1 (1988). The theoretical results are show by the full curve. 

we may try and fit the double-differential cross section (3.1) to the experimental data 
of Buchenau el a1 (1988) (see figure 1 ) .  The measurements were made on vitreous 
silica at relatively high temperatures and correspond to the photon frequency change 
of 160 GHz.  The fitting was done using the parameters: R = 500, R, = 4.5 and 
R/2n = 0.64 TAz.  These are the same parameters that  we used in our multiphonon 
approach to neutron scattering (Fleurov and Levanda 1992) and to the ultrasonic 
attenuation (Fleurov and Trakhtenberg 1986). 

4. Absorption of the electromagnetic waves in the glass 

Absorption of the electromagnetic waves in the glass can be treated in the way similar 
to that for the phonon attenuation (Fleurov and Trakhtenberg 1986, Goldanskii el 
a1 1989). We shall consider here the frequences of the electromagnetic waves which 
are not too high and do not cause transitions to higher electronic states. Now both 
the AAP* and BAP" parts of the interaction Hamiltonian (2.2) contribute to the 
absorption of the electromagnetic wave. The operator H A P M  is smaller than the 
operator IfAP* due to  the difference between the electron and ion masses. However, 
the operator does not change the electronic state of the system and for this 
reason it contributes to the lowest order. As for the larger operator kAP* it changes 
the electronic state and therefore one needs weak non-adiabatic processes returning 
the system to its initial electronic state. As will be seen later the two contributions 
are of the same order. 

The absorption coefficient (or the inverse free path length for the photons in the 
glass) due to the rigid DWPS is determined by the equation 

where + and - denote absorption or emission of a photon. The inverse lengths in 
equation (4.1) are given by the equation 
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where the effective amplitude of the process is calculated to the second order of the 
perturbation theory: 

Equation (4.3) implies integration over the electron and DWP coordinates. The inte- 
gration over the phonon coordinates { p j }  is carried out in equation (4.2). 

We have a convenient expression for the matrix (2.12) produced by averaging the 
interaction of the electromagnetic field with the electrons, f i A P = ,  over the electronic 
and DWP variables. Similar equations produced by two other interactions, gApN and 
i are now needed. 

First, the ion contribution (operator gAPN) is considered. Using the standard 
procedure applied both in this and the previous paper the corresponding interaction 
of the electromagnetic wave with the lth DWP can be written as 

The bra and ket vectors in equation (4.4) represent the electronic and DWP parts of 
the wavefunctions (2.4). Integration over all coordinates except for the phonon ones 
is implied. The electronic state does not change and is assumed to be the ground one. 
Mr is a reduced mass associated with the DWP which also accounts for the valences 
Zi of the atoms. Using the localized representation for the DWP wavefunctions one 
can write (e.g., (2.9)) 

(4.5) 

where 6' = m, m is the electron mass and M an atomic mass. Comparing 
equations (4.5) with equations (2.9) one sees that the parameter 6' is the ratio of the 
characteristic atomic and electronic momenta. This parameter also characterizes the 
scale of the non-adiabatic interaction to be considered later. Only the term propor- 
tional to the exponential function A({pj}) is kept in equation (4.4) since this operator 
appears to the first order in the effective amplitude (4.3). 

Now the canonical transformation (2.11) converts the matrix (4.4) into the matrix 

describing the interaction of the electromagnetic wave directly with the atoms of the 
DWP. 
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A similar procedure can be applied to the non-adiabaticity operator (see equk 
tion (2.6)). If the integration only with respect to the electronic and the DWP variables 
is carried out in the expression for A:,,,, then one gets the operator 

L a @ ( { P j ) )  = Lu6a@ t Ld'%@ + Ln% 

L, = L,=P[-$J(IPjl)l 

(4.7) 

where 

L,,L, m Lo m&MB'lZ. 

The operator Lap describes the non-adiabatic transition with a change of the electronic 
state which is not denoted explicitly in the equation (4.7) in order to reduce notations. 
The canonical transformation (2.11) converts (4.7) into 

Now the effective interaction amplitude R ({ }) is simplified using the assump- 
tion that the energy denominators in the e q u ~ f o n ~ 4 . 3 )  are determined mainly by the 
electronic gap E, (see (3.2)) and does not depend on the phonon and DWP quantum 
numbers. Then one can make use of the standard equation 

in order to get rid of the phonon functions 'J!l:7,n,,({pj}) (see definition (3.2)) in the 
equation for the effective amplitude (4.3). 

Having all three possible interactions described by equations (2.12), (4.6) and (4.8) 
we can calculate the effective amplitude. In fact we only need the part proportional to 
the exponential function A({pj}) which is responsible for the multiphonon processes. 

where 

(4.10) 

(4.11) 

In order to verify that two terms in equation (4.11) are of the same order we have to 
use the estimates (2.9), (4.5) and (4.7) for the quantities present in R,. As for the 
electronic energy it can he estimated using the equation 

E, ss &2m. 
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Then one gets R, = p;/&Mr. Now substituting expressions (4.10) into equa- 
tions (4.1) and (4.2) and carrying out the standard procedure used in our approach 
the multiphonon absorption coefficient is 

Equation (4.12) is similar to the equations obtained for the Raman scattering 
(3.5) and the equation for the neutron scattering cross section obtained in Fleurov 
and Levanda (1992) and uses the same notation. Together with expression (3.6) for 
the relaxation time T(T) it gives a complete description of the photon absorption 
in the glass caused by the multiphonon interaction of the light with the DWPs. It 
diffen from the absorption due to the relaxation mechanism which always contains 
an additional factor [l + (7(T)w)I2. That is why the temperature and frequency 
dependence of the multiphonon and the relaxation absorption coefficients differ and 
can be distinguished experimentally. Using the results of the analysis parallel to that 
made for the sound attenuation (Fleurov and Trakhtenberg 1986) one can say that the 
multiphonon mechanism of the electromagnetic wave attenuation is most important 
at temperatures approaching room temperature and frequencies close to the Debye 
frequencies. 
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